Wednesday 23 August 2017

Moving Average Residuals


Ao calcular uma média móvel em execução, colocar a média no período de tempo médio faz sentido No exemplo anterior, calculamos a média dos três primeiros períodos de tempo e colocá-lo próximo ao período 3. Poderíamos ter colocado a média no meio da Intervalo de tempo de três períodos, ou seja, próximo ao período 2. Isso funciona bem com períodos de tempo ímpares, mas não é tão bom para mesmo períodos de tempo. Então, onde colocamos a primeira média móvel quando M 4 Tecnicamente, a Média Móvel cairá em t 2,5, 3,5. Para evitar esse problema, suavizar as MAs usando M 2. Assim, suavizar os valores suavizados Se nós médio um número par de termos, precisamos suavizar os valores alisados ​​A tabela a seguir mostra os resultados usando M 4. Esta questão já tem uma resposta Aqui: Para um modelo de ARIMA (0,0,1), entendo que R segue a equação: xt mu e (t) thetae (t-1) (Corrija-me se estou errado) ) É igual ao residual da última observação. Por exemplo, aqui estão as primeiras quatro observações em uma amostra de dados: 526 658 624 611 Estes são os parâmetros Arima (0,0,1) modelo deu: interceptar 246,1848 ma1 0,9893 E o primeiro valor que R ajustando usando o modelo é: 327.0773 Como eu obtenho o segundo valor que eu usei: 246.1848 (0.9893 (526-327.0773)) 442.979 Mas o 2o valor ajustado dado por R é. 434.7928 Eu suponho que a diferença é por causa do termo e (t). Mas eu não sei como calcular o termo e (t). Pediu Jul 28 14 às 16:12 marcado como duplicado por Glenb 9830. Nick Stauner. Whuber 9830 Jul 29 14 at 1:24 Esta pergunta foi feita antes e já tem uma resposta. Se essas respostas não abordarem completamente a sua pergunta, faça uma nova pergunta. Você poderia obter os valores ajustados como previsões de uma etapa usando o algoritmo de inovações. Veja por exemplo a proposição 5.5.2 em Brockwell e Davis downloable da internet eu encontrei estes slides. É muito mais fácil obter os valores ajustados como a diferença entre os valores observados e os resíduos. Neste caso, sua pergunta se resume a obter os resíduos. Vamos pegar esta série gerada como um processo MA (1): Os resíduos, hat t, podem ser obtidos como um filtro recursivo: Por exemplo, podemos obter o residual no ponto de tempo 140 como o valor observado em t140 menos a média estimada menos Hat vezes o residual anterior, t139): O filtro de função pode ser usado para fazer esses cálculos: Você pode ver que o resultado é muito próximo dos resíduos retornados por resíduos. A diferença nos primeiros resíduos é mais provável devido a alguma inicialização que eu posso ter omitido. Os valores ajustados são apenas os valores observados menos os resíduos: Na prática, você deve usar as funções residuais e montado, mas para fins pedagógicos você pode tentar a equação recursiva usada acima. Você pode começar fazendo alguns exemplos à mão como mostrado acima. Eu recomendo que você leia também a documentação do filtro de função e compare alguns de seus cálculos com ele. Uma vez que você compreende as operações envolvidas na computação dos valores residuais e ajustados você poderá fazer um uso knowledgeable das funções mais práticas residuals e cabido. Você pode encontrar outras informações relacionadas a sua pergunta neste post .5.4 Diagnósticos residuais Os resíduos de um modelo de regressão são calculados como a diferença entre os valores reais e os valores ajustados: e y - hat. Cada residual é o componente imprevisível da observação associada. Após selecionar as variáveis ​​de regressão e ajustar um modelo de regressão, é necessário traçar os resíduos para verificar se os pressupostos do modelo foram satisfeitos. Há uma série de gráficos que devem ser produzidos para verificar diferentes aspectos do modelo ajustado e os pressupostos subjacentes. Lotes de dispersos de resíduos contra preditores Faça um diagrama de dispersão dos resíduos contra cada preditor no modelo. Se estes diagramas de dispersão mostram um padrão, então a relação pode ser não-linear eo modelo terá de ser modificado em conformidade. Veja a Seção 5/6 para uma discussão da regressão não-linear. Figura 5.8: Os resíduos do modelo de regressão para pontuações de crédito plotadas contra cada um dos preditores no modelo. Fit lt - lm 40 log de pontuação. Log de economias. Log de renda. Log de endereços. empregado. Data creditlog 41 par 40 mfrow c 40 2. 2 41 41 traço 40 crédito. poupança. Residuals 40 fit 41, xlab quotlog (economia) quot 41 plot 40 creditloglog. renda. Residuals 40 fit 41, xlab quotlog (renda) quot 41 plot 40 creditloglog. endereço. Residuals 40 fit 41, xlab quotlog (endereço) quot 41 plot 40 creditloglog. empregado. Residuals 40 ajuste 41, xlab quotlog (empregado) quot 41 Também é necessário traçar os resíduos contra quaisquer preditores que não estejam no modelo. Se estes mostram um padrão, então o preditor pode precisar ser adicionado ao modelo (possivelmente em uma forma não-linear). A Figura 5.8 mostra os resíduos do modelo ajustado às pontuações de crédito. Neste caso, os diagramas de dispersão não mostram padrões óbvios, embora os resíduos tendam a ser negativos para valores grandes do preditor de poupança. Isso sugere que as pontuações de crédito tendem a ser superestimado para pessoas com grandes quantidades de poupança. Para corrigir esse viés, precisaríamos usar um modelo não-linear (ver Seção 5/6). Lote de dispersão dos resíduos em relação aos valores ajustados Um gráfico dos resíduos em relação aos valores ajustados não deve apresentar nenhum padrão. Se um padrão é observado, pode haver heterocedasticidade nos erros. Ou seja, a variância dos resíduos pode não ser constante. Para superar este problema, pode ser necessária uma transformação da variável de previsão (tal como um logaritmo ou raiz quadrada). O gráfico a seguir mostra um gráfico dos resíduos em relação aos valores ajustados para o modelo de pontuação de crédito. Figura 5.9: Os resíduos do modelo de pontuação de crédito foram plotados em relação aos valores ajustados obtidos a partir do modelo. Lote 40 ajustado 40 ajuste 41. resíduos 40 ajuste 41, xlab Quot. Ylab quotResidualsquot 41 Novamente, o gráfico não mostra padrões sistemáticos ea variação nos resíduos não parece mudar com o tamanho do valor ajustado. Autocorrelação nos resíduos Quando os dados são uma série temporal, você deve olhar para um gráfico ACF dos resíduos. Isto irá revelar se há alguma autocorrelação nos resíduos (sugerindo que há informação que não foi contabilizada no modelo). A figura a seguir mostra um gráfico de tempo e ACF dos resíduos do modelo ajustado aos dados de produção de cerveja discutidos na Seção 5/2. Ajuste 40 ts1m 40 cerveja2 estação tendência 41 res lt-residuais 40 ajuste 41 par 40 mfrow c 40 1. 2 41 41 parcela 40 res, ylab quotResidualsquot, xlab quotAgora 41 Acf 40 res, principal quotACF de residualsquot 41 Há um outlier em Os resíduos (2004: Q4), o que sugere que havia algo incomum acontecendo nesse trimestre. Vale a pena investigar esse outlier para ver se havia circunstâncias ou eventos incomuns que podem ter reduzido a produção de cerveja para o trimestre. Os resíduos restantes mostram que o modelo capturou bem os padrões nos dados, embora haja uma pequena quantidade de autocorrelação deixada nos resíduos (observada no pico significativo no gráfico ACF). Isto sugere que o modelo pode ser melhorado ligeiramente, embora seja improvável fazer muita diferença às previsões resultantes. Outro teste de autocorrelação projetado para levar em conta o modelo de regressão é o teste de Durbin-Watson. É utilizado para testar a hipótese de que não existe uma autocorrelação de atraso nos resíduos. Se não houver nenhuma autocorrelação, a distribuição Durbin-Watson é simétrica em torno de 2. A maioria dos pacotes de computador irá relatar a estatística DW automaticamente e também deve fornecer um valor p. Um pequeno p-valor indica que há autocorrelação significativa restante nos resíduos. Para o modelo de cerveja, o teste de Durbin-Watson revela alguma autocorrelação de atraso significativo. Dwtest 40 fit, alt quottwo. sidedquot 41 Recomenda-se que o teste de dois lados seja sempre utilizado para verificar a autocorrelação negativa assim como a autocorrelação positiva Durbin - Watson test DW 2.5951. Valor de p 0,02764 Tanto o gráfico de ACF como o teste de Durbin-Watson mostram que há alguma autocorrelação remanescente nos resíduos. Isso significa que há alguma informação restante nos resíduos que podem ser explorados para obter melhores previsões. As previsões a partir do modelo atual ainda são imparciais, mas terão maiores intervalos de previsão do que eles precisam. Um modelo melhor neste caso será um modelo de regressão dinâmica que será abordado no Capítulo 9. Um terceiro teste possível é o teste de Breusch-Godfrey projetado para procurar autocorrelações significativas de maior atraso. Teste de autocorrelações até o retardo 5. bgtest 40 ajuste, 5 41 Histograma de resíduos Finalmente, é uma boa idéia verificar se os resíduos são normalmente distribuídos. Como explicado anteriormente, isso não é essencial para a previsão, mas torna o cálculo dos intervalos de previsão muito mais fácil. Hist 40 res, quebras quotFD. Xlab QuotResidualsquot. Principal quotHistograma de residualsquot. Ylim c 40 0 ​​22 41 41 x lt - 50. 50 linhas 40 x, ​​560 dnorm 40 x, ​​0 sd 40 res 41 41. col 2 41 Neste caso, os resíduos parecem ser ligeiramente negativamente inclinados, É provavelmente devido ao outlier. Moving Average - MA BREAKING DOWN Média Móvel - MA Como um exemplo de SMA, considere um título com os seguintes preços de fechamento em 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29, 28 Uma MA de 10 dias seria a média dos preços de fechamento para os primeiros 10 dias como o primeiro ponto de dados . O ponto de dados seguinte iria cair o preço mais antigo, adicionar o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme mencionado anteriormente, MAs atraso ação preço atual, porque eles são baseados em preços passados ​​quanto maior for o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias porque contém preços nos últimos 200 dias. A duração da MA a ser utilizada depende dos objetivos de negociação, com MAs mais curtos usados ​​para negociação de curto prazo e MAs de longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que ele está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. O impulso descendente é confirmado com um cruzamento de baixa, que ocorre quando um MA de curto prazo cruza abaixo de um MA a longo prazo. Os processos de erro de média móvel (erros ARMA) e outros modelos que envolvem atrasos de termos de erro podem ser estimados usando FIT Declarações e simulado ou previsão usando declarações SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados ​​para modelos com resíduos autocorrelacionados. A macro AR pode ser usada para especificar modelos com processos de erro autorregressivo. A macro MA pode ser usada para especificar modelos com processos de erro de média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Observe que os s são independentes e identicamente distribuídos e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel, onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é automaticamente definido pelo PROC MODEL como A função ZLAG deve ser usada para que os modelos MA trunquem a recursividade dos atrasos. Isso garante que os erros defasados ​​começam em zero na fase de antecipação e não propagam valores ausentes quando faltam as variáveis ​​de período de latência e garantem que os erros futuros sejam zero, em vez de faltarem durante a simulação ou a previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. O modelo geral ARMA (p, q) tem a seguinte forma: Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros auto-regressivos e de média móvel para os vários desfasamentos. Você pode usar qualquer nome que desejar para essas variáveis, e há muitas maneiras equivalentes que a especificação poderia ser escrita. Os processos Vector ARMA também podem ser estimados com PROC MODEL. Por exemplo, um processo AR (1) de duas variáveis ​​para os erros das duas variáveis ​​endógenas Y1 e Y2 pode ser especificado da seguinte maneira: Problemas de Convergência com Modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro do intervalo apropriado, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ​​ou porque as iterações se afastaram de valores razoáveis. Cuidado deve ser usado na escolha de valores iniciais para ARMA parâmetros. Os valores iniciais de 0,001 para os parâmetros ARMA normalmente funcionam se o modelo se encaixa bem nos dados e o problema está bem condicionado. Note-se que um modelo MA pode muitas vezes ser aproximado por um modelo de alta ordem AR, e vice-versa. Isso pode resultar em alta colinearidade em modelos ARMA mistos, o que por sua vez pode causar grave mal-condicionamento nos cálculos e instabilidade das estimativas dos parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma instrução FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos a zero (ou a estimativas anteriores razoáveis, se disponível). Em seguida, use outra instrução FIT para estimar os parâmetros ARMA somente, usando os valores de parâmetro estrutural da primeira execução. Uma vez que os valores dos parâmetros estruturais são susceptíveis de estar perto de suas estimativas finais, as estimativas ARMA parâmetro agora pode convergir. Finalmente, use outra instrução FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros são agora provavelmente muito próximos de suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os retornos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos SAS / ETS são os seguintes: mínimos quadrados condicionais (procedimentos ARMA e MODELO) mínimos máximos incondicionais (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (Procedimento AUTOREG somente) Hildreth-Lu, que exclui as primeiras p observações (procedimento MODEL somente) Consulte o Capítulo 8, O Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As inicializações de CLS, ULS, ML e HL podem ser realizadas pelo PROC MODEL. Para erros de AR (1), estas inicializações podem ser produzidas como mostrado na Tabela 18.2. Estes métodos são equivalentes em amostras grandes. Tabela 18.2 Inicializações Executadas por PROC MODEL: AR (1) ERROS Os retornos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de diferentes maneiras. Os seguintes paradigmas de inicialização de erros de média móvel são suportados pelos procedimentos ARIMA e MODELO: mínimos quadrados condicionais mínimos incondicionais O método de mínimos quadrados condicionais de estimativa de termos de erros de média móvel não é ótimo porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos atrasados ​​iniciais, que se estendem antes do início dos dados, são assumidos como 0, o seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância da média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Normalmente, esta diferença converge rapidamente para 0, mas para processos de média móvel quase não-reversíveis a convergência é bastante lenta. Para minimizar esse problema, você deve ter abundância de dados, e as estimativas de parâmetros de média móvel devem estar bem dentro da faixa de inversão. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: Erros de média móvel podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) para o processo de média móvel. Um processo de média móvel geralmente pode ser bem aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A macro AR A macro SAS gera instruções de programação para MODELO PROC para modelos autorregressivos. A macro AR é parte do software SAS / ETS, e nenhuma opção especial precisa ser definida para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equações estruturais ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de auto-regressão: auto-regressão vetorial irrestrita auto-regressão vetorial restrita Autoregressão Univariada Para modelar o termo de erro de uma equação como um processo autorregressivo, use a seguinte instrução após a equação: Por exemplo, suponha que Y seja a Linear de X1, X2 e um erro de AR (2). Você escreveria este modelo da seguinte maneira: As chamadas para AR devem vir depois de todas as equações às quais o processo se aplica. A invocação de macro precedente, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 18.58. Figura 18.58 Saída de opção LIST para um modelo AR (2) As variáveis ​​prefixadas PRED são variáveis ​​de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às instruções explicitamente escritas na seção Formulário Geral para Modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em defasagens selecionadas. Por exemplo, se você quisesse parâmetros autorregressivos nos retornos 1, 12 e 13, você pode usar as seguintes instruções: Estas instruções geram a saída mostrada na Figura 18.59. Figura 18.59 Saída de Opção LIST para um Modelo AR com Lags em 1, 12 e 13 O MODELO Procedimento Lista de Código de Programa Compilado como Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) il12 ZLAG12 (y - perdy) il13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y PRED. y - y Existem Variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais AR usa todas as observações e assume zeros para os retornos iniciais de termos autorregressivos. Usando a opção M, você pode solicitar que AR use o método de mínimos quadrados incondicionais (ULS) ou de máxima verossimilhança (ML). Por exemplo, as discussões sobre esses métodos são fornecidas na seção AR Condições iniciais. Usando a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos autorregressivos iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo autorregressivo à variável endógena, em vez de ao termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os cinco atrasos anteriores de Y à equação no exemplo anterior, você pode usar AR para gerar os parâmetros e os retornos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 18.60. Figura 18.60 Saída de opção LIST para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma interceptação e os valores de Y nos cinco períodos mais recentes. Auto-regressão vetorial irrestrita Para modelar os termos de erro de um conjunto de equações como um processo autorregressivo de vetor, use a seguinte forma da macro AR após as equações: O valor processname é qualquer nome que você fornecer para AR usar para fazer nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processo para cada conjunto. O nome do processo garante que os nomes de variáveis ​​usados ​​são exclusivos. Use um valor de processname curto para o processo se as estimativas de parâmetros forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetro menor ou igual a oito caracteres, mas isso é limitado pelo comprimento de processname. Que é usado como um prefixo para os nomes de parâmetro AR. O valor da lista de variáveis ​​é a lista de variáveis ​​endógenas para as equações. Por exemplo, suponha que erros para as equações Y1, Y2 e Y3 sejam gerados por um processo autorregressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código semelhante para Y2 e Y3: Somente o método de mínimos quadrados condicional (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições de que a matriz de coeficientes seja 0 em intervalos selecionados. Por exemplo, as seguintes afirmações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes com atraso 2 restrito a 0 e com os coeficientes nos retornos 1 e 3 sem restrições: Você pode modelar as três séries Y1Y3 como um processo autorregressivo de vetor Nas variáveis ​​em vez de nos erros usando a opção TYPEV. Se você quiser modelar Y1Y3 como uma função de valores passados ​​de Y1Y3 e algumas variáveis ​​exógenas ou constantes, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregressiva do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregressiva do modelo pode ser uma função de variáveis ​​exógenas, ou pode ser parâmetros de interceptação. Se não houver componentes exógenos para o modelo de auto-regressão do vetor, incluindo sem interceptações, então atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis ​​antes de AR é chamado. Este exemplo modela o vetor Y (Y1 Y2 Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo tem 18 (3 3 3 3) parâmetros. Sintaxe da Macro AR Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem a forma geral especifica um prefixo para AR a ser usado na construção de nomes de variáveis ​​necessários para definir o processo AR. Se o endolist não é especificado, a lista endógena padrão é nome. Que deve ser o nome da equação à qual o processo de erro AR deve ser aplicado. O valor de nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Se for dado mais de um nome, é criado um processo vetorial sem restrições com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolist predefinirá o nome. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os atrasos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos AR de AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis ​​endógenas em vez de aos resíduos estruturais das equações. Auto-regressão vetorial restrito Você pode controlar quais parâmetros são incluídos no processo, restringindo a 0 aqueles parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis ​​e definir a dimensão do processo. Em seguida, use chamadas AR adicionais para gerar termos para equações selecionadas com variáveis ​​selecionadas em intervalos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo estabelece que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não Y3) nos dois intervalos 1 e 2 e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas apenas com atraso 1. AR Macro Sintaxe para AR Restrito AR Um uso alternativo de AR é permitido para impor restrições em um processo AR vetorial chamando AR várias vezes para especificar diferentes AR termos e defasagens para diferentes Equações. A primeira chamada tem a forma geral especifica um prefixo para AR para usar na construção de nomes de variáveis ​​necessárias para definir o vetor AR processo. Especifica a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR mas é esperar por mais informações especificadas em chamadas AR mais tarde para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é o mesmo que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolist da primeira chamada para o valor de nome podem aparecer na lista de equações na lista de eqlist. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações da lista de equações. Somente nomes no endolist da primeira chamada para o valor de nome podem aparecer em varlist. Se não for especificado, varlist padrão para endolist. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist irá usar todos os intervalos 1 a nlag. A macro MA A macro SAS MA gera instruções de programação para MODELO PROC para modelos de média móvel. A macro MA faz parte do software SAS / ETS e não são necessárias opções especiais para utilizar a macro. O processo de erro de média móvel pode ser aplicado aos erros da equação estrutural. A sintaxe da macro MA é o mesmo que a macro AR, exceto que não há argumento TYPE. Quando você estiver usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SAS / IML produzem um processo de erro ARMA (1, (1 3)) e salvam-no no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: As estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 18.61. Figura 18.61 Estimativas de um processo ARMA (1, (1 3)) Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo MA de vetor não são necessárias, a sintaxe da macro MA tem a forma geral especifica um prefixo para MA usar na construção de nomes de variáveis ​​necessárias para definir o processo MA e é o endolist padrão. É a ordem do processo MA. Especifica as equações às quais o processo MA deve ser aplicado. Se for dado mais de um nome, a estimativa de CLS é usada para o processo de vetor. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os atrasos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada no endolist. MA Sintaxe de Macro para Movimentação-Média de Vetores Restrita Um uso alternativo de MA é permitido para impor restrições em um processo de MA de vetor chamando MA várias vezes para especificar diferentes termos de MA e defasagens para equações diferentes. A primeira chamada tem a forma geral especifica um prefixo para MA para usar na construção de nomes de variáveis ​​necessárias para definir o vetor MA processo. Especifica a ordem do processo MA. Especifica a lista de equações às quais o processo MA deve ser aplicado. Especifica que MA não é para gerar o processo de MA mas é aguardar informações adicionais especificadas em chamadas de MA posterior para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é o mesmo que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada MA devem ser aplicadas. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações da lista de equações. Especifica a lista de defasagens em que os termos MA devem ser adicionados.

No comments:

Post a Comment